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Abstract—The paper presents finite element results for geometrically nonlinear bending of fiber-reinforced,
single-layer and two-layer cross-ply rectangular plates constructed of materials which have linear elastic
properties in tension and compression that are different. A shear deformation theory of layered composite
plates, accounting for large rotations (in the von Karman sense) and the bimodular action, is employed to
analfyze rectangular plates made of two cord-rubber bimodular materials. Numerical results for transverse
defiection are presented for simply supported plates under sinusoidally distributed and uniformly dis-
tributed transverse loads.

INTRODUCTION

The present paper is a continuation of the research by the authors and their colleagues[1-5] in
the analysis of bimodular composite plates. The previous investigations by the authors and
others were based on geometrically linear theory of plates. The only exception to this statement
is provided by the works of Kamiya[6, 7], which are concerned with a clamped circular plate,
and a simply supported rectangular plate under sinusoidally distributed load, respectively. The
present paper employs the finite element developed in[2, 8] and the fiber-governed constitutive
model of Bert[9] to investigate the geometrically nonlinear response of bimodular-material
plates. The following brief review of literature provides a background for the present paper.

Analysis of plates made of bimodular materials began with the work of Ambartsumyan[10]
in 1965 (although Timoshenko[11] considered the flexural stresses in such materials as early as
1941, Ambartsumyan's work is credited for the renewed interest in the analysis of bimodular
materials). Shapiro{12] considered the simple problem of a circular plate under a pure bending
moment at its edge. Kamiya[6, 7] analyzed the large-deflection behavior of clamped circular
plates using a finite difference technique, and rectangular plates under sinusoidally distributed
load using the Galerkin method. In these investigations, only bimodular isotropic materials were
considered, and the transverse shear strains were omitted. The effect of thickness shear
deformation was included in the simple case of cylindrical bending by Kamiya[i3]. The first
analysis of bimodular, anisotropic materials is apparently due to Jones and Morgan{[14}], who
treated cylindrical bending of a thin, cross-ply laminate. In the last couple of years, a number of
papers dealing with the static bending and free vibration of single-layer and two-layer cross-ply
plates have appeared[1-5, 15-17]. Most of these works are a result of the support of the
research by C. W. Bert at the University of Oklahoma and the senior author by the Office of
Naval Research. The significant contributions of this research over previous works are:

(i) The material of each layer is both elastically and thermoelastically orthotropic and
bimodular;

(ii) Both single-layer orthotropic and two-layer cross-ply laminated plate and shell con-
structions were considered using a fibre-governed constitutive model;

(iti) Transverse shear strains are included;

(iv) Simply-supported and clamped boundary conditions are considered, and sinusoidal
distribution as well as uniform distribution of transverse load and temperature changes are
considered;

(v) Static, transient, and free vibration responses are studied;

(vi) Both exact (for certain edge conditions and loadings) and finite-element analyses are
presented.

The present paper investigates the large-deflection (in the von Karman sense) behavior of
single-layer orthotropic and two-layer cross-ply plates.
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2. GOVERNING EQUATIONS
Consider a plate constructed of a finite number of uniform-thickness, orthotropic, bimodu-

lar-material layers oriented arbitrarily with respect to the plate axes. The plate coordinates are
taken such that the xy-plane coincides with the midplane of the plate. Under the assumptions
that the layers remain linearly elastic during the deformation and the generalized Hooke’s law is
valid, and that no debonding occurs between layers, one can employ the equations governing
the shear deformable theory of layered composite plates{8, 18]. Since these equations are
amply documented in the works cited earlier (see, e.g. [I-5]), only the strain-displacement
relations and the equations of motion will be repeated here to indicate the nonlinear terms
resulting from the von Karman theory.

Assuming that the conditions of the von Karman plate theory are valid, and accounting for
the transverse shear strains, the strain-displacement relations can be expressed in the form,

ou 1{aw W _ q
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Here u, v, w are the midplane displacements along x, y, z directions: and ¢, and ¢, are the
slopes in the xz and yz planes due to bending only. In writing the strain-displacement equations,
it is assumed that the products of ¢, ¢,, du/dx and 3u/dy are negligible. Since the constitutive
relations are based on the plane-stress assumption, strain ¢; does not come into the equations.

Neglecting the body moments and surface shearing forces, the equations of equilibrium (in
the absence of surface and body forces) can be written as,

Nl.x + N().y = 0
N6.x + NZ.Y =0
Ql.x + QZ.y + N(Niv W) = 40 (22)

M ,+M,-Q =0
Mg, + My, - Q=0

where N, Q, and M, are the stress and moment resultants defined by
hi2
NN = [ 0 90, Q0= oy 00d 23
-2 W2

and N{) is the nonlinear operator,

N(N, w) = (N, 24 %(Nﬁg—j)+%(zv6%-‘y3) a"y (Nz‘;‘y“) 2.4)

Here o; (i=1, 2, 4, 5, 6) denote the stress components (| = 0y, 02 = 0y, 04 = 0y, 05 = 0, and
06 = Oyy).

3. FINITE-ELEMENT FORMULATION i
The finite-element model used in the present study is the same as that employed in [2}
except for the inclusion of the nonlinear terms. The formulation is not repeated here but the
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steps involved in the nonlinear analysis of the bimodular-material plates are pointed out. The
finite-element model, for a typical element, in the present case is of the following form

(K){A}={F}, 3.1

where {A} denotes the column of the nodal values of the generalized displacements. The
elements of the element stiffness matrix {K] are given in Appendix 1.

Several comments are in order on the computational scheme used in the present study. First
one should note that the stiffness matrix [K] is nonlinear in that it depends on the displacement
vector. Therefore, an iteration technique must be used. On the other hand, the calculation of
the stiffness coefficients requires the knowledge of the neutral surface locations,

Ze = = [ u, +%(W.,)’] / Yo

Zoy= [v.y + %( W.y)z] / e

which in turn depend on the solution («, v, w, ., ¢,). Thus another iterative scheme is required
for the determination of the neutral surface locations. The latter iterative scheme begins with
assumed values of z, and 2,, (say, 2, = z,, =0) and then A;, B, and D, are computed using
these values. In general, the neutral-surface locations are not independent of the position (x, y),
and therefore, the expressions for plate stiffnesses, A;, B; and D, also depend on x and y
coordinates. Since the element stiffness coefficients K;; are evaluated at the Gauss points, the
plate stiffnesses A;, B; and D; are also evaluated at the Gauss points by using the neutral-
surface positions computed at the Gauss points. After obtaining the generalized displacements,
the neutral-surface locations are recomputed. Using these new values of z,, and z,, the
stiffnesses for the next iteration are computed. This procedure is repeated until the difference
between any two consecutive values of z,, (and z,,) differ by a small preselected value (say
0.1%). Once the convergence on the neutral surface locations is achieved, iteration on the
nonlinear stiffnesses is carried until convergence on the displacements is achieved.

(3.2)

4. NUMERICAL RESULTS AND DISCUSSION

In the following, numerical results are presented for rectangular plates made of two
bimodufar materials: aramid cord-rubber (AR) and polyester cord-rubber (PR), which are used
in automobile tires. The material properties for these two materials are given in Table 1. In the
present study, a 2 X 2 mesh of nine-node isoparametric elements in the quarter plate was used.
The shear correction coefficients k? were chosen to be 5/6. All of the computations were carried
on an IBM 3032 computer in double precision.

A summary of the linear analysis is presented in Table 2. The effect of the aspect ratio (b/a)
and thickness-to-side ratio (h/a) on nondimensionalized center deflection (#) is apparent from
the results in Table 2 (also see Figs. 1 and 2). The effect of the transverse shear deformation is
to increase the nondimensionalized center deflection as much as 30% for a side-to-thickness
ratio of afh =25.

The results of geometrically nonlinear bending of bimodular plates are discussed next. In
order to validate the present element for the nonlinear analysis, first, single-layer and two-layer

Table 1. Material properties for aramid cord-rubber and polyester cord-rubber, unidirectional, bimodulus com-
posite materials

Propert. Aramid-Rubber Polyester-Rubber
perty Tenstle Compressive Tens'¥1e Compressive
Eyy (6Pa) 3.58 0.012 0.617 0.0369
Ez2 (6Pa) 0.00909 0.012 0.008 0.0106
vi2 0.416 0.205 0.475 0.18%
612 = G13 (GPa) 0.0037 0.0037 0.00262 0.00267

63 (6Pa) 0.0029 0.00499 0.00233 0.00475
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Table 2. Comparison of closed-form and finite element solutions of single-layer (0°) and two-layer (0°/90°%)
rectangular plates of aramid-rubber material (linear analysis)

single-layer (0°) Two-layer (0°/90°)
b/a  h/a Zng/h W 20/t W
CFS FES CFS FES CFS FES CFS FES
CPY  0.4317 - 0.7124 - 0.4281 - 08.6950 -
0.01 0.4317 0.4316  0.7134  0.7137  0.4281 0.4280 0.6969 1.6973
o) 0.4318 0.4315 0.8134 0.8138 0.4282 0.4279 0.7830 0,7834
0.6 0.2 0.4319 0.4316 11,1125  1.112°  0.4284 0.428) 1.0342  1.n345
0.4 0.4322 N.4319  2.2862 2.2862 0.4290 0.4287 1.9802 1.9800
0.5  0.4323 0.4320  3.15090  3.1589  0.4293 0.4289 2.6695 2.6689
CPT  0.442¢ N 1.8671 - 0.4383 - 1.7734 -
0,01 0.4420 0.4420  1.8689 1.8598 0.4383 0,4383 1.17%1 1.7760
g.1 0.4420 0.4417  2.0537 2.0546 0.4384 0.4381 1.9492 11,9502
1.0 0.2 0.442) n.4418 2,6068 2.6069 0.4385 0.438] 2.4635  2,4647
0.4 0.4422 0,4419  4.7450  4.7504 0.4388 0.4384 4.396D0 4,3976
0.5  0.4423 0.4420 6,3228 6.3242  0.4389 0.4386 5.7764 5,7782

CPT  0.4454 - 3.0096 - 0.4434 - 2.8916 -

01 0.4454 G.4454  3.0123  3.0135 0.4434 0.4438 2.8941  2.8954
2.0 0.1 0.4454 0.4452 3.2774  3.2783 0.4434 0.4431 3.1478 3.1490
0.2 0.4454 0.4451  4.0774 4.0773 0.4434 0.4431 3,9130  3,9137
0.4  0.4454 0.4451  7.2381  7.2337 0.4435 0.4431 6.9234 6.9220
0.5

0.4455 0.4451  9.5801 9.5724 n,4435 n,4431 9,1397 9,135

- ¢ n31y02 4y
t w x (Hfzzh ‘)]0 /(qoa )

10.0 + _ closed-form solution (CFS)
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Fig. 1. Effect of side-to-thickness ratio (a/h) on the nondimensionalized deﬂ;ction (w) of sipgle-layer )
and two-layer (0°/90°) rectangular plates of aramid-rubber bimodular material (smali-deflection theory).

az
S 5, SL

st = single<layer (0°)
8.0 J TL = two-tayer (09/90°)

2.0 4

b/a + 0.6 1.0 1.4 1.8 2.2

Fig. 2. Effect of aspect ratio (b/a) on the nondimensionalized dcﬂectign (W) of single-layer 0°) and
two-layer (0°/90°) rectangular plates of aramid-rubber bimodular material (small-deflection theory).
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Fig. 3. Nonlinear center deflection of single- and two-layer cross-ply square plates under uniform loading
(E/ = Ef, i=1, 2; simply supported boundary conditions).

cross-ply rectangular (ordinary, not bimodular) plates under uniformly distributed loading and
simply supported boundary conditions were analyzed, and the results are compared with the
analytical (perturbation) results of Chia[l9, 20) in Fig. 3. The material properties of the
single-layer plate (a/h = 100, a/b = 1) are (see [19])

E|/E2 = 200, G|2/Ez = 05, m= 0.2. (4!)
The layer properties of the two-layer plate (alh = 100, a/b = 1) are (see [20])
E|/E2 = 400, G|2/E2 = 06, Ve = 0.2. (42)

The present results are in excellent agreement with those of Chia[19, 20]. Next, an isotropic,
bimodular, simply supported square plate under sinusoidally distributed loading was analyzed in
an effort to make comparisons with the results of Kamiya[7]. The present results are compared
with those of Kamiya in Fig. 4. The present results do not agree with those of Kamiya[7] for all
ratios of E°/E' (including 1). Since our results are validated for E/E' =1 in the previous
example, one must come to the conclusion that Kamiya's[7] results are in error.

0.80
0.75L\\

N 9= q sin 'T"- sin 1.1
Yo i e o a?/Eh2
o.70} . %" %/t
AN a/h = 100, bes
AN 2
o651 ~ o FEm((arm ¥ »3.82)
LN

Nondimensionslized center deflection, w = w/h

o.25 } Keatya {(a/m)3Gg+16.91)

0.2

oz T T £t
Fig. 4. Nondimensionalized center deflection versus the ratio of longitudinal modulus in tension to the

longitudinal modulus in compression for an isotropic bimodular, square plate under sinusoidal loading (simply
supported case).
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Table 3. Nondimen_sionalized transverse deflection of single-layer (0°) and two-layer (0°/90°) square plates of
aramid-rubber and polyester-rubber materials. (a/h) = 100, w = wih, § = goE$.a*/h)

_ i Aramid - Rubber B Polyester -Rubber
q single-layer (0°) 0°/90° single-Tayer (0°) 0°/90°
SL ubL SL SL uoL SL

Linear  0.1869 0.2959 0.1777 n.108) N.1683  0.1776
10 0.1776  0.2720 0.1660  0.1069 0.165%4 0.1707
20 0.3350 0.4963 0.3100 0.2110  0.3233  0.3254
30 0.4743  0.682} 0.4353  0.3115  0.4718  0.4639
40 0.5977 0.8417 0.5452  0.408) 0.6106 0.5879
50 0.7083 0.9798  0.6443 0.5006 0.7399  0.6997

UDL=uniform 10aqd, SSLasinusaidal ioad

w
h Strsingle~layer, Tiztwo-layer
1.0 AR=3ramid-rubber
PR=pol yester -rubber ./'
h =
0.8 k=100 SLLSSLLAR
SLLUDL AR~
0.6
0.4
TL,SSL,AR

0.2 SLLSSLLPR

—— e —— ——— —————

10 20 30 40 50 ¢

Fig. 5. Load-deflection curves for thin square plates of bimodular materials (afh = 100).

0.4

Fig. 6. Effect of plate aspect ratio on the nonlinear deflection of aramid-rubber bimodular-material
rectangular plates under sinusoidal foading (SSL) (SL = single-layer, TL = two-layer, AR = aramid-rubber,
PR = polyester-rubber).

The nondimensionalized center deflection (w/h) versus the load parameter (§ = goE$a*h*)
are presented in Table 3 for single-layer (0°) and two-layer (0°/90°) square plates (a/h = 100)
aramid-rubber and polyester-rubber materials under sinusoidal loading and uniform loading.
First note that the response of aramid-rubber plates is more nonlinear than that of polyester-
rubber plates. Also note that the deflection due to uniform loading is about one and one-half
times that due to sinusoidal loading (also see Fig. 5).

Plot of nondimensionalized center deflection versus the aspect ratio (a/b) is shown in Fig. 6
for single-layer and two-layer (0°/90°) aramid-rubber plates (a/h = 100) under sinusoidal loading
(for the load parameter value of 10). The effect of the aspect ratio is, relatively, more
pronounced in the two-layer plates than in the single-layer plates (the effect is to increase the
deflection, w = w/h).

Plots of the nondimensionalized center deflection versus the side-to-thickness ratio and the
load parameter are shown, respectively, in Figs. 7 and 8 for aramid-rubber square plates under
sinusoidal loading. From the plots presented in Fig. 7 it is clear that the effect of shear
deformation is more pronounced with increasing values of the load parameter. This can also be
seen from the load-deflection curves presented in Fig. 8.

S. SUMMARY AND CONCLUSIONS
Results of the finite-element analysis of the equations governing the Timoshenko-type shear
deformable theory that accounts for geometric nonlinearities of the von Karman plate theory
are presented for aramid-rubber and polyester-rubber bimodular composite plates under trans-
verse loading. Both single-layer and two-layer cross-ply plates are analyzed under sinusoidally
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Fig. 7. Load-deflection curves for square plates of aramid-rubber bimodular material under sinusoidal
loading.
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Fig. 8. Effect of side-to-thickness ratio on the nonlinear deflection (w/h) of square plates of aramid-rubber
bimodular material (a/ k = 100).

and uniformly distributed loads. The effect of the thickness-shear (which is to increase the
deflection w/h with increasing values of side-to-thickness ratio, a/h) is more apparent for
side-to-thickness ratios smaller than twenty, and for larger load parameter values. The finite-
element analysis of ordinary—(i.e. not bimodular—) material plates whose elastic properties are
taken to be the average of compressive and tensile properties listed in Table 1 show that the
deflections predicted are about one-fourth (for aramid-rubber plates with a/h = 10) of those
predicted using the bimodular properties (see [16]). Thus the effect of bimodularity is significant
on the response,

As pointed out in the introduction of this paper, there is only a little to be done in the way of
finitc-element analyses of bimodular plates. The nonlinear transient response of bimodular
plates seems to be the final step in the series of investigations based on the fiber-governed
constitutive model. As far as the constitutive models are concerned, there is still a need for
improved andfor realistic models. If a single functional relationship between stresses and
strains were available for both compressive and tensile regions, the analysis would be much
cleaner (free of any assumption concerning the state of stress or strain in the material).
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APPENDIX 1

Elements of stiffness matrix

{KH}[XIZ}{KB}{KM}(KH]
{KZ!] [KZZ] {K231 {Kz4] {K25}
(K] =| (K] IKZ] [P (K] {(AD)
[KHK2TKC K% [K*]
(KKK KK,

The matrix coefficients K3 are given by
(K" = AplS™]+ AulS”),

K"} = AulS¥] + Al $717 = [KPT,
(K"} = AulRY]+ AlR3 1+ AIRYY +(RPD = KT,
[K"} = BulS™]+ Bl $”) = [K*TT,
(K") = B[S+ Bl S¥17 =[K"Y"
[KP]= Apf 8§71+ Al S,
(K¥)= AulRETT + AR} + AGlRZ)+ RF) =K7Y
[K*)= BulS”1" + Bl $¥1=[K“T,
[K¥]= Bpl 87} + Bl S™1 = 1K
[KP]= A $¥]+ Aul 87),

I [ 0608, g (3%id9; -&L’i]
k=3[ [M SN (T Ry | ax s

(K}l = Al 57} = KTV,
(K31 = By[RE)+ BulRYYT + Bo((R?T+[RYD = AKPY,
(K¥1= Aul S} = [KPY,
(K31 = BARY)+ BulRY1+ Bo(RYY + [R5 = AKTT,
(K%} = DyS*1+ Degl 87T+ Assl S},
[K®]=DlS1+ Ded $1" = [K*T,
[K®] = D[ S™1+ Dy 871+ Aul S). (A2)
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where

Ré = fk ‘%(%)%‘%dxd» Lén=0.xy,

- 3 2 F ] 2
Ni=4y (6—:) +A12(5¥) + 2AI6%§—“I

ay’
- aw\? w aw aw
z—Alz(ax) +Azz(ay) +2Azs'£3;»

ax 3y (A3

Here A;, By, and Dj are the plate stiffnesses,
hi2
(As By D)= [ (1,2.9Qudz =126
hi2 ..
A= Qudzii=49 (A4

where 4 is the total thickness of the plate, Qi denotes the plane-stress reduced stiffness (i, j refer to the position in the
compliance matrix; k refers to the sign of the fiber-direction strain: & = 1, tensile and k = 2, compressive; and [ refers to

the layer number), ¢; and «; are the strains and curvatures associated with the displacements in (2.1), and k; are the shear
correction coefficients (see [2-5]).
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